Создан метод определения “галлюцинирования” ИИ
Когда языковые модели ИИ фабрикуют ответы/imgs/2024/06/21/14/6510254/5e25b4c92d103052bc2c84f52ea445e65ed56959.jpeg)
Подход, известный как семантическая энтропия, анализирует множество возможных ответов на запрос и объединяет их в кластеры на основе семантического сходства. Если преобладает один кластер, это указывает на то, что LLM, скорее всего, не уверен в формулировке, но имеет правильный ответ. И наоборот, множественные кластеры указывают на возможную конфабуляцию.
Этот метод, опробованный в различных областях - от мелочей до биографических данных, - неизменно превосходит другие методы обнаружения ошибок в выявлении ложной информации, пишут ученые. Выяснилось, что значительная часть ошибок, допускаемых LLM, связана с конфабуляцией, когда модели синтезируют правдоподобно звучащие ответы, не подкрепленные фактической достоверностью. Полученные результаты подчеркивают важность совершенствования способности LLM распознавать неопределенность и могут привести к повышению надежности генерируемых ИИ ответов в различных областях применения.