Российские учёные улучшили алгоритмы обучения нейросетей
Они позволяют проводить часть вычислений в фоновом режимеСпециалисты из Московского университета имени М. В. Ломоносова разработали новые алгоритмы для обработки данных, которые улучшают скорость обучения нейронных сетей. Эти алгоритмы оптимизируют процесс предварительной обработки данных в процессе обучения.
Авторы предложили алгоритмы, которые работают в фоновом режиме, что помогает более эффективно использовать вычислительные ресурсы. Их подход реализован с использованием языков программирования Python и C++, что делает его доступным для разработчиков и исследователей.
Эти улучшения существенно сокращают время обучения нейронных сетей и лучше используют вычислительные ресурсы. Это имеет большое значение для развития новых приложений глубокого обучения, таких как в медицине и автономных транспортных средствах.